How Technology Can Prevent Children From Dying in Hot Cars

Sensors and cameras can activate alarms before it’s too late

9 September 2016

Since 1998, nearly 700 babies and other children in the United States alone have died of heatstroke after being accidentally left in a hot vehicle. More than 25 cases have been reported this year. Half of those deaths resulted from children who were left in the cars by caregivers. In 30 percent of the cases, the child entered an unattended, unlocked vehicle.

When outdoor temperatures exceed 30 °C, a vehicle’s internal temperature can rise to 67 °C in as little as 20 minutes. Heatstroke occurs when a person’s temperature exceeds 40 °C, causing internal organs to shut down and damaging cells.

The auto industry is slowly taking action to prevent such deaths. General Motors announced a rear-seat reminder feature in its 2017 GMC Acadia sport-utility vehicle. It notifies the driver at the end of a trip that the rear door was previously opened, prompting the driver to check the backseat before exiting. Car seat manufacturer Evenflo offers technology on the Advanced SensorSafe Embrace DLX infant seat that plays a tone to remind a driver that a child is still in the seat. These are two solutions, but there are several other features that might help prevent tragedies.


According to a CNN report, in 2012 the U.S. government warned that “new devices intended to prevent children from dying of heatstroke in parked vehicles are unreliable and should not be used as stand-alone measures to prevent such tragedies.” And, the report noted, no aftermarket devices protected against a child entering an unlocked vehicle. Four years later, this is still the case.

Being a retired systems engineer, I have examined this problem from several perspectives. First, there is the need to detect when a child is left in the vehicle—whether it be through sensors in a car seat or the floor, or rear seats. The system of sensors must produce some kind of alert to warn either the driver, a caregiver, a nearby adult, or first responders in a timely manner so they can remove the child before the symptoms of heatstroke set in. Automakers must also examine cars’ existing technologies or look at new ones in the works, and assess how these can be applied to protect children.

Whether children are left in a car seat or hide in an unattended vehicle, any technology designed to protect them must be able to send out a warning. The technologies needed for each of the following problems are different.

  1. To prevent children from being forgotten in car seats, the seats themselves can be built with sensors to capture biometric data about the child, including weight, respiration, heart rate, and movements, and also whether the child is breathing out carbon dioxide. This information can be transmitted in real time to a caregiver’s smartphone.

A timer can begin either when the driver shuts off the engine or exits the car without removing the child, while sensors monitor the interior temperature of the vehicle. Collectively these would be intended to sense the presence of an unattended child left behind in a car and produce some type of alert, whether by activating the car horn or car alarm or sending a message to the caregiver’s smartphone.

  1. When children enter an unattended, unlocked vehicle and cannot get out, sensors could be installed to detect movement, screams, banging, and other noises, and send an alarm. Multiple video cameras would need to cover several areas of the vehicle’s interior, including the floor between rows of seats and, in hatchback vehicles, the storage area behind the backseat—where children may hide. An easily accessible switch could be installed for children to activate an alarm themselves. Or a feature could be added that would automatically unlock the doors when the engine has been off for a period of time and is empty of any front-seat occupants but sensors detect that children are still in the back.

Once technologies that can detect unattended children are implemented, then the next step is to interface them with what is already installed in vehicles. That includes video cameras, the horn (which can act as an alarm), and Bluetooth technology (which can send messages to a driver’s smartphone). Cars can already sense when doors are opened or closed and when seat belts are engaged or not engaged, and they can display outdoor temperatures. Many are also equipped with safety components such as a latch for exiting the rear compartment or trunk. A systems solution would integrate all of these technologies toward the common goal of saving children’s lives.

Elden, a retired professional engineer, is an IEEE life senior member and a member of the IEEE Society on Social Implications of Technology. To reach him, email

IEEE membership offers a wide range of benefits and opportunities for those who share a common interest in technology. If you are not already a member, consider joining IEEE and becoming part of a worldwide network of more than 400,000 students and professionals.

Learn More